EE 508 Lecture 40

Some Recent Filter Structures

A Power-Efficient Reconfigurable OTA-C Filter for Low-Frequency Biomedical Applications

Sheng-Yu Peng, *Member, IEEE*, Yu-Hsien Lee, Tzu-Yun Wang, *Student Member, IEEE*, Hui-Chun Huang, Min-Rui Lai, Chiang-Hsi Lee, and Li-Han Liu

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-I: REGULAR PAPERS, VOL. 65, NO. 2, FEBRUARY 2018

(b)

Recall the basic two-integrator loop

$$V_{01}SC_{1} = G_{X}V_{01} + g_{m1}V_{IN} + g_{m4}V_{02}$$

$$V_{02}SC_{2} = g_{m3}V_{01}$$

- This is a fully-differential implementation of the standard two-integrator loop
- MUX selects either LP or BP output

$$\frac{V_{01}}{V_{IN}} = \frac{s\frac{g_{m1}}{C_1}}{s^2 + s\frac{g_{m2}}{C_1} + \frac{g_{m3}g_{m4}}{C_1C_2}}$$
$$\frac{V_{02}}{V_{IN}} = \frac{\frac{g_{m3}g_{m1}}{C_1C_2}}{s^2 + s\frac{g_{m2}}{C_1} + \frac{g_{m3}g_{m4}}{C_1C_2}}$$

- This is a fully-differential implementation of the standard two-integrator loop
- MUX selects either LP or BP output

$$\frac{V_{01}}{V_{IN}} = \frac{s\frac{g_{m1}}{C_1}}{s^2 + s\frac{g_{m2}}{C_1} + \frac{g_{m3}g_{m4}}{C_1C_2}}$$
$$\frac{V_{02}}{V_{IN}} = \frac{\frac{g_{m3}g_{m1}}{C_1C_2}}{s^2 + s\frac{g_{m2}}{C_1} + \frac{g_{m3}g_{m4}}{C_1C_2}}$$

OTAs operate in weak inversion

Adjust ω0 by changing tail currents – claim in excess of 5 decades of adjustment Target 2Hz to 20KHz though claim can go much lower (claim to 10mHz range) and higher Bias current adjusted by changing charge on floating gate transistor Each biquad requires 0.12mm² of die area in 350nm process

Linearized OTA

Used computer iteration to size devices in OTA Good linearity and low power dissipation claimed

A 28nm-CMOS 100MHz 1mW 12dBm-IIP3 4th-order Flipped-Source-Follower Analog Filter F. Fary1, M. De Matteis1, T. Vergine1,2 and A. Baschirotto1

ESSCIRC 2018 VDD > Ids3 M3 M4 Vin Ç1 M1 > r_{ds1} Vout IREF C2 M2 > ľds2 GND

Flipped-Source-Follower NMOS Biquadratic Cell

Table 1 – Filter Design Paramters			
Transfer Function		4 th -Order Low-Pass	
dc-Gain		0dB	
Poles Frequency		100 MHz	
Cell A Q Factor	1.306	Cell B Q Factor	0.5412
Cell A g _{m1} - g _{m2}	1.8 mA/V	Cell B gm1- gm3	1.8 mA/V
Cell A - C _{1a}	4.8 pF	Cell B - C _{1b}	1.99 pF
Cell A - C _{2a}	1.75 pF	Cell B - C _{2b}	3.98 pF

A=0.026mm² for 4th order BW filter in 28nm process P approx. 1mW

$$V_{OUT} (sC_{1} + sC_{2}) + g_{m2}V_{GS2} - g_{m1}V_{GS1} = sC_{1}V_{GS2}$$

$$V_{IN} = V_{GS1} + V_{OUT}$$

$$V_{GS2}sC_{1} + g_{m1}V_{GS1} = V_{OUT}sC_{1}$$

$$\frac{V_{OUT}}{V_{IN}} = \frac{g_{m1}g_{m2}}{s^2 C_1 C_2 + s C_1 g_{m2} + g_{m1} g_{m2}}$$

$$\omega_0 = \sqrt{\frac{g_{m1}g_{m2}}{C_1C_2}}$$
$$Q = \sqrt{\frac{g_{m1}}{g_{\partial m2}}} \frac{C_2}{C_1}$$

A New Method to Design Multi-Standard Analog Baseband Low-Pass Filter

Ersin Alaybeyoğlu¹, Hakan Kuntman²

<u>2017 10th International Conference on Electrical and Electronics Engineering</u> (ELECO)

10MHz – 40MHz

Projected Area 0.02mm² in 180nm proc

$$\frac{V_{LP}}{V_{in}} = \frac{g_{m1}g_{m2}}{s^2 C_1 C_2 + s C_1 g_{m1} + g_{m1} g_{m2}}$$
$$w_0 = \sqrt{\frac{g_{m1}g_{m2}}{C_1 C_2}}$$
$$Q = \sqrt{\frac{C_2 g_{m2}}{C_1 g_{m1}}}$$

Low-Power *Gm–C* Filter Employing Current-Reuse Differential Difference Amplifiers

John S. Mincey, *Student Member, IEEE*, Carlos Briseno-Vidrios, *Student Member, IEEE*, Jose Silva-Martinez, *Fellow, IEEE*, and Christopher T. Rodenbeck, *Senior Member, IEEE*

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS, VOL. 64, NO. 6, JUNE 2017

Typical Differential Implementation

Typical Single-Ended Implementation

Require 4 OTAs

Fig. 3. (a) Conventional differential pair. (b) DDP using half the bias current. (c) Current-reuse DDA.

Dual Differential Pair: DDP Dual Different Amplifier: DDA

Current Reuse offers potential for significant power reduction

Dual input OTA

$$I_{OUT} = g_{mA}V_A + g_{mB}V_B$$

Consider:

$$V_{OUT}SC_{1} = -g_{m1A}V_{OUT} + g_{m1B}V_{X}$$
$$V_{X}SC_{2} = g_{m2B}V_{OUT} + g_{m2A}V_{IN}$$

$$\frac{V_{OUT}}{V_{IN}} = -\frac{g_{m2A}g_{m1B}}{\left(s^{2}C_{1}C_{2} + sC_{2}g_{m1A} + g_{m1B}g_{m2B}\right)}$$

Realizes 2nd-order lowpass with just 2 OTAs

Dual input OTA

$$I_{OUT} = g_{mA}V_A + g_{mB}V_B$$

$$I_{OUTA} = g_{m2}V_{IN1}^{-} + g_{m4}V_{IN2}^{-}$$
$$I_{OUTB} = g_{m1}V_{IN1}^{+} + g_{m3}V_{IN2}^{+}$$

Dual input OTA

2nd Order Lowpass Biquad using Current-reuse OTA

Dual input OTA

Sixth-order Butterworth G_m -C filter was fabricated

- 180-nm CMOS process
- total chip area of 0.21 mm²
- 65MHz Band Edge
- 1.3mW/pole

A 0.9V 75MHz 2.8mW 4th-Order Analog Filter in CMOS-Bulk 28nm Technology

F. Ciciotti, M. De Matteis, and A. Baschirotto

ISCAS 2018

A 0.9V 75MHz 2.8mW 4th-Order Analog Filter in CMOS-Bulk 28nm Technology

F. Ciciotti, M. De Matteis, and A. Baschirotto

Fig. 2. Op Amp with feedforward compensation and O-CMFB circuit

CMOS 28nm process

4-bit capacitor arrays are used for frequency response programmability Filter covers the 40–105MHz range 0.7 mW/poleArea = 0.08mm^2

Stay Safe and Stay Healthy !

End of Lecture 40